Fast moment estimation for generalized latent Dirichlet models
نویسندگان
چکیده
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has been demonstrated to have computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. The key computational advantage of our method (MELD) is that parameter estimation does not require instantiation of the latent variables. Moreover, a representational advantage of the GMM approach is that the behavior of the model is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application of MELD to several data sets.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملEfficient Learning for Time Series Models by Non-Negative Moment Matrix Factorization
In recent years, method-of-moments (MoM) based algorithms for latent variable models have been popular in the machine learning community, as a computationally cheaper alternatives to more conventional maximum likelihood based algorithms. Although there are MoM algorithms for the Hidden Markov Model (HMM), Gaussian Mixture Model (GMM), and Latent Dirichlet Allocation (LDA), it is unclear how to ...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملMulti-Conditional Learning for Joint Probability Models with Latent Variables
We introduce Multi-Conditional Learning, a framework for optimizing graphical models based not on joint likelihood, or on conditional likelihood, but based on a product of several marginal conditional likelihoods each relying on common sets of parameters from an underlying joint model and predicting different subsets of variables conditioned on other subsets. When applied to undirected models w...
متن کاملDirichlet Mixtures for Query Estimation in Information Retrieval
Treated as small samples of text, user queries require smoothing to better estimate the probabilities of their true model. Traditional techniques to perform this smoothing include automatic query expansion and local feedback. This paper applies the bioinformatics smoothing technique, Dirichlet mixtures, to the task of query estimation. We discuss Dirichlet mixtures’ relation to relevance models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.05324 شماره
صفحات -
تاریخ انتشار 2016